Cardiac neural crest of the mouse embryo: axial level of origin, migratory pathway and cell autonomy of the splotch (Sp2H) mutant effect.

نویسندگان

  • Wood Yee Chan
  • Chui Shan Cheung
  • Kim Ming Yung
  • Andrew J Copp
چکیده

A sub-population of the neural crest is known to play a crucial role in development of the cardiac outflow tract. Studies in avians have mapped the complete migratory pathways taken by 'cardiac' neural crest cells en route from the neural tube to the developing heart. A cardiac neural crest lineage is also known to exist in mammals, although detailed information on its axial level of origin and migratory pattern are lacking. We used focal cell labelling and orthotopic grafting, followed by whole embryo culture, to determine the spatio-temporal migratory pattern of cardiac neural crest in mouse embryos. Axial levels between the post-otic hindbrain and somite 4 contributed neural crest cells to the heart, with the neural tube opposite somite 2 being the most prolific source. Emigration of cardiac neural crest from the neural tube began at the 7-somite stage, with cells migrating in pathways dorsolateral to the somite, medial to the somite, and between somites. Subsequently, cardiac neural crest cells migrated through the peri-aortic mesenchyme, lateral to the pharynx, through pharyngeal arches 3, 4 and 6, and into the aortic sac. Colonisation of the outflow tract mesenchyme was detected at the 32-somite stage. Embryos homozygous for the Sp2H mutation show delayed onset of cardiac neural crest emigration, although the pathways of subsequent migration resembled wild type. The number of neural crest cells along the cardiac migratory pathway was significantly reduced in Sp2H/Sp2H embryos. To resolve current controversy over the cell autonomy of the splotch cardiac neural crest defect, we performed reciprocal grafts of premigratory neural crest between wild type and splotch embryos. Sp2H/Sp2H cells migrated normally in the +/+ environment, and +/+ cells migrated normally in the Sp2H/Sp2H environment. In contrast, retarded migration along the cardiac route occurred when either Sp2H/+ or Sp2H/Sp2H neural crest cells were grafted into the Sp2H/Sp2H environment. We conclude that the retardation of cardiac neural crest migration in splotch mutant embryos requires the genetic defect in both neural crest cells and their migratory environment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pax3 is required for cardiac neural crest migration in the mouse: evidence from the splotch (Sp2H) mutant.

Neural crest cells originating in the occipital region of the avian embryo are known to play a vital role in formation of the septum of the cardiac outflow tract and to contribute cells to the aortic arches, thymus, thyroid and parathyroids. This 'cardiac' neural crest sub-population is assumed to exist in mammals, but without direct evidence. In this paper we demonstrate, using RT-PCR and in s...

متن کامل

Development of a lethal congenital heart defect in the splotch (Pax3) mutant mouse.

OBJECTIVE The splotch (Sp2h) mutation disrupts the Pax3 gene and is lethal in homozygotes. The aim of the present study was to investigate the cause of lethality. METHODS AND RESULTS Using the splotch (Sp2H) mouse mutant, we demonstrated that approximately 60% of Sp2H homozygotes die in utero at 13.5-14.5 days of gestation. All these embryos have cardiac malformations involving partial or com...

متن کامل

Over-expression of the chondroitin sulphate proteoglycan versican is associated with defective neural crest migration in the Pax3 mutant mouse (splotch)

Splotch mice, which harbour mutations in the Pax3 gene, exhibit neural crest-related abnormalities including pigmentation defects, reduced or absent dorsal root ganglia and failure of cardiac outflow tract septation in homozygotes. Although splotch neural crest cells fail to colonise target tissues, they initiate migration in vivo and appear to migrate as well as wild type neural crest cells in...

متن کامل

Interaction between splotch (Sp) and curly tail (ct) mouse mutants in the embryonic development of neural tube defects.

The mouse mutations splotch (Sp) and curly tail (ct) both produce spinal neural tube defects with closely similar morphology, but achieve this by different embryonic mechanisms. To determine whether the mutants may interact during development, we constructed mice carrying both mutations. Double heterozygotes exhibited tail defects in 10% of cases, although the single heterozygotes do not expres...

متن کامل

Decreased neural crest stem cell expansion is responsible for the conotruncal heart defects within the splotch (Sp(2H))/Pax3 mouse mutant.

OBJECTIVE Several mouse models of cardiac neural crest cell (NCC)-associated conotruncal heart defects exist, but the specific cellular and molecular defects within cardiac NCC morphogenesis remain largely unknown. Our objective was to investigate the underlying mechanisms resulting in outflow tract defects and why insufficient cardiac NCC reach the heart of the Splotch (Sp(2H)) mouse mutant em...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 131 14  شماره 

صفحات  -

تاریخ انتشار 2004